Graphical evaluation of sparse determinants
نویسندگان
چکیده
منابع مشابه
L0 sparse graphical modeling
Graphical models are well established in providing compact conditional probability descriptions of complex multivariable interactions. In the Gaussian case, graphical models are determined by zeros in the precision or concentration matrix, i.e. the inverse of the covariance matrix. Hence, there has been much recent interest in sparse precision matrices in areas such as statistics, machine learn...
متن کاملSparse Nonparametric Graphical Models
We present some nonparametric methods for graphical modeling. In the discrete case, where the data are binary or drawn from a finite alphabet, Markov random fields are already essentially nonparametric, since the cliques can take only a finite number of values. Continuous data are different. The Gaussian graphical model is the standard parametric model for continuous data, but it makes distribu...
متن کاملSparse Matrix Graphical Models
Matrix-variate observations are frequently encountered in many contemporary statistical problems due to a rising need to organize and analyze data with structured information. In this paper, we propose a novel sparse matrix graphical model for this type of statistical problems. By penalizing respectively two precision matrices corresponding to the rows and columns, our method yields a sparse ma...
متن کاملLearning Sequence Determinants of Protein: Protein Interaction Specificity with Sparse Graphical Models
In studying the strength and specificity of interaction between members of two protein families, key questions center on which pairs of possible partners actually interact, how well they interact, and why they interact while others do not. The advent of large-scale experimental studies of interactions between members of a target family and a diverse set of possible interaction partners offers t...
متن کاملBayesian Learning of Sparse Gaussian Graphical Models
Sparse inverse covariance matrix modeling is an important tool for learning relationships among different variables in a Gaussian graph. Most existing algorithms are based on `1 regularization, with the regularization parameters tuned via cross-validation. In this paper, a Bayesian formulation of the problem is proposed, where the regularization parameters are inferred adaptively and cross-vali...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1979
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1979-0539626-2